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Abstract. This paper concerns the properties of the Hyers–Ulam stability constant of closed linear opera-
tors. Using the Moore–Penrose inverse, we prove that the mapping T → KT is lower semi-continuous and
give some sufficient and necessary conditions for T→ KT to be continuous or locally bounded.

1. Introduction and Preliminaries

In 1940, S. M. Ulam [16], in a talk given at Wisconsin University, posed the well-known stability problem,
which was partially solved by D. H. Hyers [9] in the framework of Banach spaces. Due to the question
of Ulam and the answer of Hyers the stability of equations is called after their names. Later, a large
number of papers and books have been published in connection with various generalizations of Hyers–
Ulam theorem[5, 7, 10, 13, 15, 17]. For instance, S.-E. Takahasi, H. Takagi, T. Miura and S. Miyajima [15]
investigated the Hyers–Ulam stability constant KTh of linear differential operator (Thu)(t) = u′(t) + h(t)u(t)
and pointed out that it would be interesting to investigate the properties of the mapping h→ KTh .

Motivated by this and the fact that the differential operators are always closed linear operators, we
investigate the properties of the mapping T → KT for closed linear operators in this paper. The aim of this
work is to prove that T→ KT is lower semi-continuous and provide some sufficient and necessary conditions
for T → KT to be continuous or locally bounded. To achieve our results, we need some terminology as
follows.

Let X,Y be Hilbert spaces. Let C(X,Y) and B(X,Y) denote the homogeneous set of all closed linear
operators with a dense domain and the Banach space of all bounded linear operators from X into Y,
respectively. The identity operator is denoted by I.

Definition 1.1. [6] Let T be a (not necessarily linear) mapping from the Domain D(T) ⊂ X into Y. We say that T
has the Hyers–Ulam stability if there exists a constant K > 0 with the property: For any y in the range R(T) of T,
ε > 0 and x ∈ D(T) with ‖Tx − y‖ ≤ ε, there exists x0 ∈ D(T) such that Tx0 = y and ‖x − x0‖ ≤ Kε. We call such
K > 0 a Hyers–Ulam stability constant for T and denote by KT the infimum of all Hyers–Ulam stability constants for
T. If KT is a Hyers–Ulam stability constant for T, then KT is called the Hyers–Ulam stability constant for T.
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Roughly speaking, if T has the Hyers–Ulam stability, then to each ε-approximate solution x of the
equation Tx = y, there corresponds an exact solution x0 of the equation in a Kε-neighborhood of x [6].

Definition 1.2. [1] An operator T ∈ C(X,Y) possesses a (bounded) generalized inverse if there exists an operator
S ∈ B(Y,X) such that R(S) ⊆ D(T) and (1) TSTx = Tx for all x ∈ D(T); (2) STSy = Sy for all y ∈ Y; (3) ST is
continuous. We denote a generalized inverse of T by T+.

An operator T ∈ C(X,Y) has a generalized inverse T+
∈ B(Y,X) if and only if the null space N(T) has a

topological complement N(T)c in X and R(T) has a topological complement R(T)c in Y, i.e.,

X = N(T) ⊕N(T)c and Y = R(T) ⊕ R(T)c. (1.1)

From the closed graph theorem, it follows that the operator TT+ is a projector from Y onto R(T) such that
N(TT+) = N(T+) and R(TT+) = R(T). Meanwhile, T+T can be extended uniquely to a projector from X onto
R(T+) with the null space N(T) and the range R(T+) [14].

Definition 1.3. [14] If the topological decompositions in (1.1) are orthogonal, i.e.,

X = N(T)+̇N(T)⊥ and Y = R(T)+̇R(T)⊥,

where +̇ denotes the orthogonal direct sum, then the corresponding generalized inverse is called the Moore–Penrose
inverse of T, which is usually denoted by T†.

A relationship between the Hyers–Ulam stability and the Moore–Penrose inverse of closed operators is
established in [7].

Theorem 1.4. [7] Let T ∈ C(X,Y), then the following statements are equivalent:
(1) T has the Hyers–Ulam stability;
(2) T has the bounded Moore–Penrose inverse T†;
(3) T has a bounded generalized inverse T+;
(4) T has a closed range.

Moreover, if one of the conditions above is true, then N(T†) = R(T)⊥, R(T†) = D(T) ∩ N(T)⊥, T† = [I −
P⊥N(T)]T

+P⊥R(T) and the Hyers–Ulam stability constant

KT = ‖T†‖.

2. Main Results

Lemma 2.1. [19] Let S be a densely defined and bounded linear operator from D(S) ⊂ X into Y, then there exists a
unique norm-preserving extension W : X→ Y of S such that D(W) = X,

W∗ = S∗ and W = S∗∗.

Theorem 2.2. Let T ∈ C(X,Y) have the Hyers–Ulam stability, i.e, T has a Moore–Penrose inverse T† ∈ B(Y,X). If
δT ∈ B(X,Y) satisfies ‖δT‖‖T†‖ < 1

3 (3 + 2
√

3), then T = T + δT ∈ C(X,Y) and the function

f : T→ KT

is lower semi-continuous at T.

Proof. Noting T ∈ C(X,Y) and δT ∈ B(X,Y), it is easy to verify T = T + δT ∈ C(X,Y). Because to consider
the lower semi-continuity, we can suppose that KT is finite. Then by Theorem 1.1 and Lemma 2.1, T

has the Moore-Penrose inverse T
†

and TT
†

is the orthogonal projector from Y onto R(T), (T
†

T)∗ is the

norm-preserving extension of T
†

T and is exactly the orthogonal projector from X onto R(T
†

). Noting
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R(T†) ⊂ D(T) = D(T) and R((I − T
†

T)∗) = R(I − T
†

T) = N(T) = N(T) ⊂ D(T) = D(T), we can obtain
(T
†

T − I)∗T† = (T
†

T − I)T† and (T†T)∗(T
†

T − I)∗ = (T†T)(T
†

T − I)∗, and so

T
†

− T† = T
†

(I − TT†) + T
†

(T − T)T† + (T
†

T − I)T†

= T
†

T T
†

(I − TT†) + T
†

(T − T)T† + (T
†

T − I)T†TT†

= T
†

(T T
†

)∗(I − TT†)∗ + T
†

(T − T)T† + (T
†

T − I)∗T†TT†

= T
†

(T T
†

)∗(I − TT†)∗ + T
†

(T − T)T† + (T
†

T − I)∗(T†T)∗T†

= T
†

[(I − TT†)(T T
†

)]∗ + T
†

(T − T)T† + [(T†T)∗(T
†

T − I)∗]∗T†

= T
†

[(I − TT†)(T T
†

)]∗ + T
†

(T − T)T† + [(T†T)(T
†

T − I)∗]∗T†

= T
†

[(I − TT†)(T + δT) T
†

]∗ − T
†

δTT† + [(T†T − T†δT)(T
†

T − I)∗]∗T†

= T
†

[(I − TT†)δTT
†

]∗ − T
†

δTT† + [(T†δT)(I − T
†

T)∗]∗T†

= T
†

(T
†

)∗(δT)∗(I − TT†) − T
†

δTT† + (I − T
†

T)∗(δT)∗(T†)∗T†,

i.e.,
T
†

= T† + T
†

(T
†

)∗(δT)∗(I − TT†) − T
†

δTT† + (I − T
†

T)∗(δT)∗(T†)∗T†. (2.1)

Therefore
||T
†

|| ≥ ||T†|| − ||δT|| · ||T
†

||
2
− ||T

†

|| · ||δT|| · ||T†|| − ||δT|| · ||T†||2.

Set p = ‖δT‖, q = ‖T†‖, then
pK2

T
+ (1 + pq)KT + pq2

− q ≥ 0. (2.2)

Since 0 < pq = ‖δT‖‖T†‖ < 1
3 (3 + 2

√
3), we get that the discriminant is

4 = (1 + pq)2
− 4p(pq2

− q)
= −3p2q2 + 6pq + 1

= −3[pq −
1
3

(3 + 2
√

3)][pq −
1
3

(3 − 2
√

3)] > 0.

It follows from (2.2) that

KT ≥
−(1 + pq) +

√
4

2p
=

2q − 2pq2

1 + pq +
√
−3p2q2 + 6pq + 1

. (2.3)

Let p = ‖δT‖ → 0, then the right formula in (2.3) approaches to q = KT. Thus

lim inf
‖δT‖→0

KT ≥ KT.

The proof is completed.

Theorem 2.3. Let T ∈ C(X,Y) have the Hyers–Ulam stability, i.e, T has a Moore-Penrose inverse T† ∈ B(Y,X). If
δT ∈ B(X,Y) satisfies ‖δT‖ · ‖T†‖ < 1

3 (3 + 2
√

3), then the following statements are equivalent:
(1) T has the Hyers–Ulam stability and the real valued function f : T→ KT is continuous at T, i.e.,

lim
‖δT‖→0

KT = KT;

(2) T has the Hyers–Ulam stability and the real valued function f : T → KT is locally bounded at T, i.e., there exist
M > 0 and δ1 > 0 such that for all ‖δT‖ < δ1,

KT ≤M.
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Proof. Obviously, we need to show (2)⇒ (1). In fact, it follows from (2.1) that

‖T
†

‖ ≤ ‖T†‖ + ‖T
†

‖
2
‖δT‖ + ‖T

†

‖‖T†‖‖δT‖ + ||T†||2‖δT‖.

Then lim sup
‖δT‖→0

KT ≤ KT. By Theorem 2.1, lim
‖δT‖→0

KT = KT. The proof is completed.

Lemma 2.4. Let M be a closed linear subspace of Hilbert space X. Let PM : X→M be a (not necessarily selfadjoint)
projector from X onto M, then the orthogonal projector P⊥M from X onto M can be expressed by

P⊥M = −PM(I − PM − P∗M)−1 = −(I − PM − P∗M)−1P∗M.

Proof. The projector PM is idempotent and so is P∗M, then

(I − PM − P∗M)PM = −P∗MPM = P∗M(I − PM − P∗M). (2.4)

Set N = R(I − PM) = N(PM), then N is a closed linear subspace of X and

PMP⊥M = P⊥M, PMP⊥N = P⊥NPM = 0, (I − PM)P⊥N = P⊥N, P⊥N(I − PM) = I − PM.

Hence

(P⊥N − P⊥M)(I − PM − P∗M) = P⊥N(I − PM) − P⊥M(I − PM) − P⊥NP∗M + P⊥MP∗M
= (I − PM) − (P⊥M − PM) − (PMP⊥N)∗ + (PMP⊥M)∗

= I − P⊥M + P⊥M = I.

Similarly, (I − PM − P∗M)(P⊥N − P⊥M) = I. Thus P⊥N − P⊥M = (I − PM − P∗M)−1
∈ B(X) and

P⊥M = −PM(P⊥N − P⊥M) = −PM(I − PM − P∗M)−1.

Utilizing (2.4), we have
P⊥M = −PM(I − PM − P∗M)−1 = −(I − PM − P∗M)−1P∗M.

The proof is completed.

Lemma 2.5. Let T ∈ C(X,Y) with a bounded generalized inverse T+
∈ B(Y,X), then T has the bounded Moore–

Penrose inverse T† and
T† = [I − (T+T)∗ − (T+T)∗∗]−1T+[I − TT+

− (TT+)∗]−1.

Proof. Since TT+ is a projector from Y onto R(T), by Lemma 2.2,

P⊥R(T) = −TT+[I − TT+
− (TT+)∗]−1.

By Lemma 2.1, PN(T) = (I − T+T)∗∗ is a projector from X onto N(T), P∗N(T) = (I − T+T)∗ and so

I − P⊥N(T) = I + [I − PN(T) − P∗N(T)]
−1P∗N(T)

= [I − PN(T) − P∗N(T)]
−1[I − PN(T)]

= [I − (I − T+T)∗∗ − (I − T+T)∗]−1[I − PN(T)]

= −[I − (T+T)∗ − (T+T)∗∗]−1[I − PN(T)].

It follows from PN(T)|D(T) = I − T+T that [I − PN(T)]T+ = T+ and

T† = [I − P⊥N(T)]T
+P⊥R(T)

= [I − (T+T)∗ − (T+T)∗∗]−1[I − PN(T)]T+TT+[I − TT+
− (TT+)∗]−1

= [I − (T+T)∗ − (T+T)∗∗]−1T+[I − TT+
− (TT+)∗]−1.

The proof is completed.
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Next, we shall give some sufficient and necessary conditions for the mapping of the Hyers-Ulam stability
constants to be continuous or locally bounded.

Theorem 2.6. Let T ∈ C(X,Y) have the Hyers–Ulam stability, i.e, T has a Moore-Penrose inverse T† ∈ B(Y,X). If
δT ∈ B(X,Y) satisfies ‖δT‖ · ‖T†‖ < 1, then the following statements are equivalent:
(1) B = T†(I + δTT†)−1 = (I + T†δT)−1T† : Y→ X is a generalized inverse of T;
(2) R(T) ∩N(T†) = {0};
(3) (I + δTT†)−1T maps N(T) into R(T);

(4) T has the Moore-Penrose inverse T
†

∈ B(Y,X) with lim
‖δT‖→0

T
†

= T†;

(5) T has the Hyers–Ulam stability and the real valued function f : T→ KT is continuous at T, i.e.,

lim
‖δT‖→0

KT = KT;

(6) T has the Hyers–Ulam stability and the real valued function f : T → KT is locally bounded at T, i.e., there exist
M > 0 and δ1 > 0 such that for all ‖δT‖ < δ1,

KT ≤M.

In this case, the Hyers–Ulam stability constant KT = ‖T
†

‖ and

T
†

= {I − [(I + T†δT)−1T†T]∗ − [(I + T†δT)−1T†T]∗∗}−1

T†(I + δTT†)−1
{I − [TT†(I + δTT†)] − [(TT†(I + δTT†)−1]∗}−1.

Proof. It follows from Theorem 2.1 in [8] that (1) ⇔ (2) ⇔ (3) and obviously, (4) ⇒ (5) ⇔ (6). To the end,
we shall show (1)⇒ (4) and (5)⇒ (4)⇒ (3).

(1)⇒ (4). If B is a generalized inverse of T, then by Lemma 2.5, T has the Moore-Penrose inverse

T
†

= [I − (BT)∗ − (BT)∗∗]−1B[I − (TB) − (TB)∗]−1

= {I − [(I + T†δT)−1T†T]∗ − [(I + T†δT)−1T†T]∗∗}−1

T†(I + δTT†)−1
{I − [TT†(I + δTT†)−1] − [TT†(I + δTT†)−1]∗}−1.

Noticing

[(I + T†δT)−1T†T]∗ = [(I + T†δT)−1T†T + (I + T†δT)−1T†δT]∗

= (T†T)∗[(I + T†δT)−1]∗ + (δT)∗(T†)∗[(I + T†δT)−1]∗ → (T†T)∗

and TT†(I + δTT†)−1 = TT†(I + δTT†)−1 + δTT†(I + δTT†)−1
→ TT†, we can see

T
†

→ [I − (T†T)∗ − (T†T)∗∗]−1T†[I − TT† − (TT†)∗]−1 = T†.

(5)⇒ (4). It follows from (2.1) that

||T
†

− T†|| ≤ (||T
†

||
2 + ||T

†

|| · ||T†|| + ||T†||2)||δT||.

Combining it with (5), we can conclude lim
‖δT‖→0

T
†

= T†.

(4) ⇒ (3). If T has the Moore–Penrose inverse T
†

with lim
‖δT‖→0

T
†

= T†, then, by P⊥
N(T)

= (I − T
†

T)∗,

P⊥N(T) = (I − T†T)∗ and

P⊥
N(T)
− P⊥N(T) = (I − T

†

T)∗ − (I − T†T)∗ = (T†T − T
†

T)∗

= −[T
†

(T − T) + (T
†

− T†)T]∗

= −(T
†

δT)∗ + [T
†

δTT†T − (I − T
†

T)∗(δT)∗(T†)∗T†T]∗

= −(I − T†T)∗(T
†

)∗(δT)∗ − (T†T)∗T†δT(I − T
†

T)∗,
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we can obtain lim
‖δT‖→0

P⊥
N(T)

= P⊥N(T). Without loss of generality, we may assume ‖P⊥
N(T)
−P⊥N(T)‖ < 1. From [11],

R(P⊥N(T)) = P⊥N(T)R(P⊥
N(T)

), i.e.,

N(T) = P⊥N(T)N(T) = (I − T†T)∗N(T) = (I − T†T)N(T).

Hence, for any x ∈ N(T), there is an element x1 ∈ N(T) such that x = (I − T†T)x1. Therefore,

(I + δTT†)−1Tx = (I + δTT†)−1T(I − T†T)x1

= (I + δTT†)−1TT†T(−x1)
= (I + δTT†)−1(T + δT)T†T(−x1)
= (I + δTT†)−1(I + δTT†)T(−x1)
= T(−x1) ∈ R(T),

which implies the statement (3) holds. The proof is completed.

Remark 2.7. Theorem 2.3 is a direct generalization of Theorem 3.1 in [7] to the case of closed linear operators. It’s
also worth pointing out that the expression of Moore–Penrose inverse in Theorem 2.3 is more concise than the ones in
[2, 7, 8, 12, 18]. Note that the expression in statement (1) maybe the simplest possible one for the generalized inverse
[4], the statement (2) is called to be a stable perturbation of T [3] and the statement (3) is first discovered by M. Z.
Nashed to be a condition for generalized inverse to be stable [14].

Corollary 2.8. Let T ∈ C(X,Y) have the Hyers–Ulam stability, i.e, T has a Moore-Penrose inverse T† ∈ B(Y,X). If
δT ∈ B(X,Y) satisfies ‖δT‖ · ‖T†‖ < 1,

N(T) ⊆ N(δT) or R(δT) ⊆ R(T),

then T has the Hyers–Ulam stability and lim
‖δT‖→0

KT = KT.

Proof. If N(T) ⊂ N(δT), then N(T) ⊂ N(T). By the statement (3) in Theorem 2.6, we can get what we desired.
If R(δT) ⊂ R(T), then R(T) ⊂ R(T). Noting R(T) ∩N(T+) = {0} and the statement (2) in Theorem 2.6, we can
complete the proof.

Corollary 2.9. Let X, Y be Hilbert spaces and let T ∈ C(X,Y) be a semi-Fredholm operator. If T has the bounded
Moore–Penrose inverse T† ∈ B(Y,X) and δT ∈ B(X,Y) satisfies ‖δT‖‖T†‖ < 1, then T = T + δT has the Hyers–Ulam
stability and the Hyers–Ulam stability constant KT satisfies lim

‖δT‖→0
KT = KT if and only if

either dim N(T) = dim N(T) < +∞ or codim R(T) = codim R(T) < +∞.

Proof. The proof of the sufficiency is similar to Theorem 2.12 in [7], we omit it. In the following, we
shall show the necessity. If T has the Hyers–Ulam stability and lim

‖δT‖→0
KT = KT, then by Theorem 2.6,

B = T†(I + δTT†)−1 = (I + T†δT)−1T† : Y→ X is a generalized inverse of T. Thus

R(T†)+̇N(T) = X = R(B) ⊕N(T) = R(T†) ⊕N(T) (2.5)

and
R(T)+̇N(T†) = Y = R(T) ⊕N(B) = R(T) ⊕N(T†). (2.6)

If dim N(T) < +∞, then by (2.5), codim R(T†) = dim N(T) < +∞ and

dim N(T) = codim R(T†) = dim N(T) < +∞.

If codim R(T) < +∞, it follows from (2.6) that dim N(T†) = codim R(T) < +∞ and therefore

codim R(T) = dim N(T†) = codim R(T) < +∞.

The proof is completed.

Remark 2.10. Corollary 2.2 is a generalization of Theorem 3.3 in [7] to the case of closed linear operators.
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